Performance Analysis on Evolutionary Algorithms for the Minimum Label Spanning Tree Problem
نویسندگان
چکیده
Some experimental investigations have shown that evolutionary algorithms (EAs) are efficient for the minimum label spanning tree (MLST) problem. However, we know little about that in theory. As one step towards this issue, we theoretically analyze the performances of the (1+1) EA, a simple version of EAs, and a multi-objective evolutionary algorithm called GSEMO on the MLST problem. We reveal that for the MLSTb problem the (1+1) EA and GSEMO achieve a b+1 2 -approximation ratio in expected polynomial times of n the number of nodes and k the number of labels. We also show that GSEMO achieves a (2ln(n))approximation ratio for the MLST problem in expected polynomial time of n and k. At the same time, we show that the (1+1) EA and GSEMO outperform local search algorithms on three instances of the MLST problem. We also construct an instance on which GSEMO outperforms the (1+1) EA.
منابع مشابه
A Metaheuristic Algorithm for the Minimum Routing Cost Spanning Tree Problem
The routing cost of a spanning tree in a weighted and connected graph is defined as the total length of paths between all pairs of vertices. The objective of the minimum routing cost spanning tree problem is to find a spanning tree such that its routing cost is minimum. This is an NP-Hard problem that we present a GRASP with path-relinking metaheuristic algorithm for it. GRASP is a multi-start ...
متن کاملSOLVING A STEP FIXED CHARGE TRANSPORTATION PROBLEM BY A SPANNING TREE-BASED MEMETIC ALGORITHM
In this paper, we consider the step fixed-charge transportation problem (FCTP) in which a step fixed cost, sometimes called a setup cost, is incurred if another related variable assumes a nonzero value. In order to solve the problem, two metaheuristic, a spanning tree-based genetic algorithm (GA) and a spanning tree-based memetic algorithm (MA), are developed for this NP-hard problem. For compa...
متن کاملClassification of encrypted traffic for applications based on statistical features
Traffic classification plays an important role in many aspects of network management such as identifying type of the transferred data, detection of malware applications, applying policies to restrict network accesses and so on. Basic methods in this field were using some obvious traffic features like port number and protocol type to classify the traffic type. However, recent changes in applicat...
متن کاملQuasi Random Deployment Strategy for Reliable Communication Backbones in Wireless Sensor Networks
Topology construction and topology maintenance are significant sub-problems of topology control. Spanning tree based algorithms for topology control are basically transmission range based type construction algorithms. The construction of an effective backbone, however, is indirectly related to the placement of nodes. Also, the dependence of network reliability on the communication path undertak...
متن کاملA Comparative Assessment of Memetic, Evolutionary, and Constructive Algorithms for the Multiobjective d-MST Problem
Finding a minimum-weight spanning tree (MST) in a graph is a classic problem in operational research with important applications in network design. In this paper, we consider the degree-constrained multi-objective MST problem, which is NP-hard. On fteen benchmark instances, we compare the performance of three diierent algorithms: the Pareto archived evolution strategy (PAES); a new multiobjecti...
متن کامل